EN | RU    
Scientific & Technical Literature Publishing House
Search:

Home»

Contact Us»

Journals»

News»

Preparation of Papers»

Advertising»

Feedback»

Books»

About Us»



advertisement



Ecological Systems and Devices

Annotation
<< Back
The Method for Neural Network Calculation of Concentrations of Priority Pollutants in the Surface Layer of Atmospheric Air
Tunakova Yu.A., Novikova S.V., Shagidullin A.R., Valiev V.S.

The development of methods for computational monitoring of atmospheric air pollution plays an important role in ensuring
sustainable development on the territories with high level of atmospheric pollution. The development of local models of
atmospheric diffusion of impurities is carried out on the basis of taking into account the characteristics of turbulent air
fl ows, determined using a system of hydrothermodynamic equations or empirical data (Gaussian models). Such a description
of the atmosphere is deterministic, while in the surface layer of atmospheric air, each calculated concentration value at given
parameter values corresponds to an infi nite set of observed impurity concentration values. The complication of deterministic
calculation models is associated with an increase in the diffi culty and resource intensity of calculations. Therefore, the
accuracy of calculations using the normative calculation model can be increased by using artifi cial neural networks. Neural
networks are trained on the data of experimental measurements of surface concentrations of pollutants, and then can
reproduce the complex effect of meteorological factors, local dispersion conditions and compensate for the error in the
initial parameters of stationary and mobile emission sources. The article formulates the method for using artifi cial neural
networks to calculate surface concentrations of pollutants in the atmospheric air. The results of designing and training
neural networks for calculating the concentrations of common impurities are presented.
Keywords: atmospheric pollution, atmospheric emissions, dispersion calculation, artifi cial neural network.


DOI: 10.25791/esip.11.2023.1410

Pp. 24-31.

 Sections

«About journal

«Archive

«Thematic focus of the journal

«Formatting rules

«Stages of the review and publication

«Review process

«Editorial and Professional Ethics

«Detecting plagiarism

«Editors and Editorial Board

«News journal


 Journals
...................................
Instruments and Systems: Monitoring, Control, and Diagnostics
...................................
Instrument-Making and Automation Means. Encyclopedic Textbook
...................................
Industrial Automatic Control Systems and Controllers
...................................
Ecological Systems and Devices
...................................
Aerospace Instrument-Making
...................................
Engineering Physics
...................................
History of Science and Engineering
...................................
Music and Time
...................................
Note Album
...................................
Musicology
...................................
Universal History
...................................
Directory of engineer
...................................
Applied Physics and Mathematics
...................................
News Academy of Engineering Sciences A.M. Prokhorov
...................................

Last news:

Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге

Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg

Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018»

ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы

Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018"

   Rambler's Top100 Rambler's Top100         


    Management system developed by: ananskikh.ru
© Publishing House "NAUCHTEKHLITIZDAT", 2005-2024